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1  Introduction 

 The recent decade has seen the intense development of dielectric elastomers as 

materials for muscle-like transducers [1-5].  The principle of operation invokes a simple and 

robust mechanism of electromechanical coupling.  Subject to voltage, a membrane of a 

dielectric elastomer reduces in thickness and expands in area.  Attributes include voltage-

actuated large deformation, light weight, fast response, ease of processing, and low cost.  

Promising applications range from haptics, adaptive optics, to energy harvesting [2-4].  A 

commercial product with significant potential has just been released [6].   

 Mimicking muscles and bones, muscle-like transducers are often structures of 

tensegrity, with membranes of soft materials in tension, and members of hard materials in 

compression.  The tension enables the membranes to provide some rigidity to the structures, 

while the softness enables the membranes to actuate large configurational change of the 

structures [7].  The large deformation may be accompanied with rich nonlinear behavior of 

instability, which can be harnessed to enhance dramatically the performance of transducers 

[8-11].  The development of the theory of dielectric elastomers presents a unique opportunity 

in mechanics [5].   

 Recently a new class of actuators based on dielectric elastomers have been described, 

named hydrostatically coupled dielectric elastomer (HCDE) actuators [12-14].  Such an 

actuator consists of two membranes of a dielectric elastomer, clamped by rigid circular rings 

(Fig. 1).  The bottom membrane is sandwiched between soft electrodes, and is referred to as 

the active membrane.   The top membrane can bear an external force, and is referred to as 

the passive membrane.   Confined between the two membranes is a fixed volume of a fluid.  
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In the absence of the voltage and the force, Fig. 1(a), the actuator is in the rest state.   When a 

voltage is applied between the electrodes, Fig. 1(b), the bottom membrane expands its area 

and deforms downward.  The volume of the fluid is conserved, which couples the 

deformation of the two membranes, producing a push-pull action.   

 The HCDE actuator is a structure of tensegrity:  the membranes are in tension, while 

the rings and the fluid are in compression. The inclusion of the fluid in the structure imparts 

additional properties.  The fluid couples the movements of the two membranes, but 

separates their functions.  One membrane interfaces with the external force, and the other 

actuate the movement by voltage.  If desired, the two functions can be realized by 

membranes located far apart.         

 The HCDE actuators are being developed as haptic displays, as well as wearable 

cutaneous stimulators [12-14].  This development targets significant applications, such as 

tactile feedback for mobile gaming [6] and Braille displays [15].   Within this context, the 

HCDE actuators offer two attractive features [12-14].  First, one can touch the passive 

membrane without being exposed to the high voltage that drives the active membrane.  

Second, local distortion of the passive membrane caused by the external force is 

redistributed by the fluid, and is smoothly transferred to the active membrane.  This fact 

increases the electrical robustness of the device.  If the mechanical load were applied directly 

on the active membrane, a local perturbation could lead to premature electrical breakdown.  

 To develop the HCDE actuators further, a computational model is desired.  

Anticipated uses of the computational model include predicting strokes and blocking forces, 

optimizing them by surveying the parameter space, analyzing inhomogeneous fields to avert 
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various modes of failure.  While efforts have been made to model curved membranes of 

dielectric elastomers under mechanical and electrical loads [16-20], no model has dealt with 

the HCDE actuators. 

 This paper presents a computational model of the HCDE actuators.  We formulate 

the governing equations on the basis of a nonlinear field theory of deformable dielectrics.  

The membranes are assumed to be neo-Hookean, capable of large and axisymmetric 

deformation.  The voltage-induced deformation is described by the model of ideal dielectric 

elastomers.  The force is applied by pressing a rigid flat punch against one of the membranes.  

A computational procedure is described to account for the incompressible fluid and the 

membrane-punch contact.  Computational results are compared with experimental data, and 

are used to discuss basic characteristics of the HCDE actuators. 

 

2 Experiment 

 Fig. 2 sketches the experiment that characterizes HCDE actuators [14].   When an 

actuator was in the rest state, a rigid flat punch was brought to touch the top membrane with 

negligible force (Fig. 2a). When a voltage was applied to the bottom membrane, both 

membranes moved downward (Fig. 2b).   The free stroke was measured as the distance to 

bring the punch to touch the top membrane again with negligible force (Fig. 2c).   When the 

voltage was turned off and the punch was maintained in position, the top membrane pushed 

the punch with a blocking force, over a region of contact (Fig. 2d).  The experimental data 

used to validate the computational model are extracted from Ref. [14].  They refer to 

actuators assembled with the materials and the parameters listed in Table I. 
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TABLE I. Materials and parameters of the HCDE actuator used to validate the model. 

 

Dielectric elastomer membrane 3M VHB 4910 acrylic 
Compliant electrode material carbon grease 
Coupling fluid silicone grease 
Bi-axial membrane pre-strain 300% 
Pre-stretched membrane 
thickness 

60.6 µm 

Base radius 10 mm 
Apical height 1.78 mm 
Radius of curvature 29 mm 
Internal volume 563.53 mm3 

 

3  Governing equations and boundary conditions 

 This section presents the governing equations and boundary conditions.  The 

nonlinear field theory of elastic dielectrics dates back to the classic works of Toupin [21], 

Eringen [22], and Tiersten [23].  The theory has been re-examined in recent years in light of 

the intense development of dielectric elastomer transducers [16, 24-31].  Here we focus on 

membranes of dielectric elastomers undergoing axisymmetric deformation [16-20]. 

 The computational model is illustrated with several states of the membranes in Fig. 3.  

In the undeformed state, Fig. 3(a), two circular membranes, radius A and thickness H, lie on 

a plane.   In the prestretched state, Fig. 3(b), the membranes are clamped by rigid rings of 

radius a.  In the fluid-filled rest state, Fig. 3(c), a fluid of volume 02V  is injected between the 

two membranes, the pressure in the fluid relative to the pressure in the ambient is 0p  , and 

the apex of each membrane reaches the height 0h .  In the actuated state, Fig. 3(d), a voltage 

  is applied through the thickness of the bottom membrane, the area of the bottom 

membrane expands, and the apex of the top membrane is pulled down to the height h.  In the 

blocked state, Fig. 3(e), the voltage on the bottom is turned off, and a rigid flat punch presses 
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the top membrane with a force F over a contact of radius b.  Both the voltage and the force 

change the pressure in the fluid. 

 We first examine the kinematics of the actuator.  The undeformed state, Fig. 3(a), is 

used as the reference state, in which we label each material particle by its radial coordinate R.  

The membranes are assumed to deform into an axisymmetric shape, Fig. 3(c)-(e).  Let the 

coordinate z coincide with the axis of symmetry, the coordinate r coincide with a radial 

direction, and the plane 0z  coincide with the plane of the rigid rings.  In a deformed state, 

the material particle R takes the position of coordinates z and r.    The functions  Rz  and 

 Rr  of either membrane characterize its deformed state.  The determination of the two 

functions for both membranes is an object of the computational model.   

 Consider a material element of one of the membranes, between two particles R and 

dRR .  When the membrane is in a deformed state, the particle R takes the position of 

coordinates  Rz  and  Rr , while the particle dRR   takes the position of coordinates 

 dRRz  and  dRRr  .  In the undeformed state, the material element is a straight segment, 

length dR .  In the deformed state, the material element becomes a curved segment, length 

dR1 , where 1  is the longitudinal stretch.  In a curved state, let  R  be the slope of a 

membrane at material particle R.   Write    RrdRRrdr  , so that  

   cos1
dR

dr
. (1) 

Similarly, write    RzdRRzdz  , so that 

   sin1
dR

dz
. (2) 

 Consider in the undeformed state a circle of material particles, perimeter R2 .  In 

the deformed state, these material particles occupy a circle of positions, perimeter r2 .  The 
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deformation causes the latitudinal stretch Rr /2  . When the membranes are in the 

prestretched state, Fig. 3(b), both stretches are homogeneous in the membranes, 

Aa/21   .  When the membranes are in a curved state, Fig. 3(c)-(e), however, the 

stretches are inhomogeneous in the membranes, and are described by functions  R1  and 

 R2 .   

 We next study the mechanical equilibrium.  Consider an element of a membrane 

located at position R in the reference state.  In a deformed state, the element is subject to 

tensile stresses in the longitudinal and latitudinal directions, while the stress in the direction 

normal to the membrane is negligible. Let  Rs1  be the longitudinal nominal stress, and 

 Rs2  the latitudinal nominal stress.  Fig. 4 sketches free-body diagrams.  In the undeformed 

state, Fig. 4(a), consider an annulus of the membrane between R and dRR .  In the 

deformed state, Fig. 4(b), the annulus deforms into an axisymmetric band in three 

dimensions. Acting on the band are the pressure p on the face of the band, and the 

longitudinal stresses on the rims of the band.  Balancing these forces in the z-direction, we 

obtain that    

     cossin 211 RpHRs
dR

d
 . (3) 

We next examine the free-body diagram of a half of the band, Fig. 4(c).  Balancing the forces 

acting on the half band in the latitudinal direction, we obtain that 

    HsRpHRs
dR

d
2211 sincos   . (4) 

 The electrical equilibrium is much easier to describe.  When the two electrodes on the 

active membrane are connected to a voltage source, an electric current commences, charging 

the membrane.  In equilibrium, the electric current stops, and the voltage between the two 
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electrodes equals the voltage of the source,  .  Define the nominal electric field in the 

membrane by HE /
~

 .  Define the nominal electric displacement )(
~

RD  by the electric 

charge on an element of an electrode in the deformed state divided by the area of the element 

in the undeformed state.   

 We next consider the boundary conditions.  The rigid rings clamp the membranes, so 

that the edge of the membranes does not move: 

  .0)(,)(  AzaAr  (5) 

At the apex of the active membrane, symmetry requires that 

  .0)0(,0)0(  r  (6) 

 For the passive membrane blocked by the punch, denote the radius of contact by B  

in the reference state, and b  in the deformed state.  The punch and the membrane are taken 

to be free of friction and adhesion, so that the circular region of the membrane in contact 

with the punch is in a state of homogenous, equal-biaxial stretches: 

      BbRR /21   ,  for BR  . (7) 

The two components of the nominal stresses are also equal, and can be determined by the 

stress-stretch relation.  For example, when the elasticity of the membrane is described by the 

neo-Hookean model, as in Section 4, the stresses in the membrane within the region of 

contact are given by 

     





























5

21
B

b

B

b
RsRs  , for BR  . (8) 

 For the curved part of the passive membrane, the following conditions of continuity 

are applied at the boundary of the contact: 

    bBr  , (9) 
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    hBz  , (10) 

    0B , (11) 

   





























5

1
B

b

B

b
Bs  . (12) 

Conditions (11) and (12) apply when the punch and the membrane are free of friction and 

adhesion [32]. 

 Finally consider the membrane in the region of contact as a free-body diagram.  The 

upper surface of the region is subject to the force from the punch, F.  The lower surface of the 

region is subject to the pressure from the fluid, p.  Because   0B , the longitudinal stress 

on the edge of the region is in the horizontal direction.  Balancing the force from the punch 

and the pressure from the fluid, we obtain that  

  pbF 2 . (13) 

  

4 Material model 

 Material models of electromechanical coupling have been reviewed recently [5].  Here 

we outline the specific model used in the present work.  A dielectric elastomer is a 

thermodynamic system, taken to be held at a constant temperature.  In a state of equilibrium, 

an element of the dielectric elastomer is characterized by three independent kinematic 

variables:  D
~

,, 21  .  Let W  be the nominal density of the Helmholtz free energy—that is, the 

free energy of an element of the dielectric elastomer in the current state divided by the 

volume of the element in the reference state.  As a material model, we specify the density of 

the Helmholtz free energy W as a function of the three kinematic variables: 

    DWW
~

,, 21  . (14) 
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Associated with the variations of the kinematic variables, the free energy varies by 

  
     

D
D

DWDWDW
W

~
~

~
,,

~
,,

~
,, 21

2

2

21
1

1

21 


























 . (15)  

 The element of the dielectric elastomer is subject to the stresses and electric field.  In 

a state of equilibrium, the change in the Helmholtz free energy equals the sum of the work 

done by the stresses and the work done by the electric field:   

  DEssW
~~

2211    (16) 

The longitudinal nominal stress, the latitudinal nominal, and the nominal electric field are 

work-conjugate to the three kinematic variables.  Thermodynamics dictates that the 

condition of equilibrium (16) should hold for arbitrary small variations D
~

,, 21   from the 

state of equilibrium.  

 A comparison of (15) and (16) gives that 

  
     

0
~

~

~
,,~

~
,,

~
,, 21

2

2

21
21

1

21
1 


















































 D

D

DW
E

DW
s

DW
s 












. (17) 

Because D
~

,, 21   are independent variations, the condition of equilibrium (17) is 

equivalent to three equations of state: 

  ,
)

~
,,(

1

21
1










DW
s  (18) 

  ,
)

~
,,(

2

21
2










DW
s  (19) 

  .~
)

~
,,(~ 21

D

DW
E







 (20) 

The equations of state (18)-(20) take an explicit form once the free-energy function 

 DW
~

,, 21   is prescribed. 
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 To prescribe a specific form of the function,  DW
~

,, 21  , we adopt the model of ideal 

dielectric elastomers [29].  This model assumes that the dielectric behavior of the elastomer 

is liquid-like, unaffected by deformation.  This assumption is motivated as follows.  An 

elastomer is a three-dimensional network of long and flexible polymers, held together by 

crosslinks.  Each polymer chain consists of a large number of monomers.  Consequently, the 

crosslinks negligibly affect the polarization of the monomers—that is, the elastomer can 

polarize nearly as freely as a polymer melt.   This molecular picture is consistent with the 

following experimental observation:  the permittivity changes by only a few percent when a 

membrane of an elastomer is stretched to increase the area 25 times [33].   

 The model of ideal dielectric elastomers assumes that the dielectric behavior of an 

elastomer is exactly the same as that of a polymer melt.  The true electric displacement D is 

linear in the true electric field E, namely, ED  , with the permittivity  being independent 

of the stretches.  Furthermore, the elastomer is assumed to be incompressible, so that the 

stretch in the thickness direction of the membrane, 3 , related to 1 and 2 as 213 /1   . 

The true electric field relates to the nominal electric field as EE
~

21 .  The true electric 

displacement relates to the nominal electric displacement as )/(
~

21DD  .  We rewrite 

ED   in terms of the nominal electric field and the nominal electric displacement: 

  2
2

2
1

~
~  



D
E . (21) 

Inserting (21) into (20) and integrating with respect to D
~

, we obtain that  

    2

2

2

1

2

2121
2

~

,)
~

,,(  



D

WDW stretch . (22) 
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The constant of integration,  21 ,stretchW , represents the free energy associated with the 

stretching of the elastomer.  Eq. (22) is readily interpreted.  In the model of dielectric 

elastomers, the free energy of the elastomer is the sum of that due to stretching the network 

and that due to polarization.  The electromechanical coupling only appears in the second 

term in (22), and is caused entirely by the geometric effect discussed above.   

 The free energy of stretching  21 ,stretchW  can be taken from the large repertoire in 

the literature on rubber elasticity [34].  For simplicity, here we adopt the neo-Hookean 

model:  

   3
2

),( 2

2

2

1

2

2

2

121   


stretchW , (23) 

where µ is the small strain shear modulus.  Inserting (22) and (23) into (18) and (19), we 

obtain that 

    2
2

3
1

2
2

2
3

111

~
  




D
s , (24) 

    3
2

2
1

2
3

2
2

122

~
  




D
s , (25) 

For passive membrane, the stress-stretch relations are obtained by setting 0
~
D . 

 Incidentally, the true stresses relate to the nominal stresses as 111 s   and 222 s  .  

In terms of the true quantities, (18) and (19) take the form 

  
  2

1

21
11

,
E

Wstretch 



 




 , (26) 

  
  2

1

21
22

,
E

Wstretch 



 




 . (27) 

The term 2E  is commonly called the Maxwell stress.  As evident from the above discussion, 

(26) and (27) are applicable only to ideal dielectric elastomers.  The model of ideal dielectric 
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elastomers is nearly exclusively used in previous analysis of dielectric elastomers [16, 24-31, 

35-40].  Further discussion of the model of ideal dielectric elastomers and other material 

models can be found in [5].   

 

5  Notes on computational method  

 The governing equations presented in Section 3 can be written as a set of first-order 

ordinary differential equations for the four functions:   Rr ,  Rz ,  R , and  R1 .  Eqs. (1) 

and (2) are already in the desired form.  A combination of (3) and (4), along with the 

material model, gives that 

  
H

p

sRs

s

dR

dθ

1

21

1

2 sin 
 , (28) 

  
  
  2

2

22

2

4

1

2121

23

2

3

1121
~

31

cos
~

2cos





ERR

Ess

dR

dλ










,  (29) 

where HE /
~

  for the active membrane, and 0
~
E  for the passive membrane.  The 

stresses on the right-hand side of (28) and (29) are related to 1  and 2  through the material 

model, and the latitudinal stress is related to the function  Rr  by the definition Rr /2  .  

Consequently, (1), (2), (28) and (29) are the first-order ordinary differential equations that 

govern the four functions  Rr ,  Rz ,  R , and  R1 .    

 The four first-order differential equations, along with the boundary conditions, are 

solved by using the shooting method.  The active membrane and the passive membrane are 

computed separately.  For the passive membrane pressed by the punch, the radius of contact 

B is prescribed, the force F, as well as b and h, are calculated as part of the solution to the 

boundary-value problem.   
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 The fluid is taken to be incompressible.  As the membranes deform, the volume of the 

fluid sealed between the membranes remains constant at a prescribed value, 02V . 

Consequently, the pressure p is to be determined, rather than given.  In the calculation, 

however, we prescribe a pressure p to calculate all the fields by solving the differential 

equations with the boundary conditions. Subsequently, the volume enclosed by the 

membranes can be calculated. We vary the pressure p until the volume equals the prescribed 

value 02V . In presenting computational results, we indicate the amount of the sealed fluid by 

using the height 0h  of the apex of a membrane when the actuator is in the rest state, Fig. 3(c). 

 

6  Computational results and discussions 

 To be consistent with the experimental parameters listed in Table I, in calculation we 

set the prestretch as 4/ Aa , and the normalized apical height in the rest state as 

7 1 2.0/0 Ah .  We normalize the pressure as  AHp //  , the voltage as   // H  , and 

the force as  AHF / .  

 When the HCDE actuators are developed as Braille displays, it is desirable to reduce 

the voltage to actuate.  Fig. 5 (a) plots the voltage applied to the bottom membrane as a 

function of the apical displacement of the top membrane.  The experimental data taken from 

[14] correspond to the actuated state, Fig. 2(b).  As the voltage ramps up, the bottom 

membrane expands in area and moves downward.  Through the coupling of the fluid, the top 

membrane also moves downward.  The only adjustable parameter in the calculation is 

 / .  This parameter is found to be 71 07 3.1  V/m for the computational results to 

best fit the experimental data.   
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 The elastomer used in the experiment is VHB 4910 (3M), and the measured 

permittivity is 07.4   , where 12

0 1 085.8  F/m [33].  This value of the permittivity, 

along with our fitted parameter 71 07 3.1  V/m , gives the shear modulus kPa5.1 2 .   

 When the HCDE actuators are developed as Braille displays, it is desirable to increase 

the blocking force, and make the actuator relatively stiff in the rest state.  Fig. 5 (b) plots the 

blocking force as a function of the apical displacement.  The experimental data taken from 

[14] correspond to the voltage-off state, Fig. 2(d).  The only adjustable parameter in this 

calculation is the shear modulus  .  We find kPa0.1 5  for the computational results to 

best fit the experimental data. 

 Both Figs. 5(a) and 5(b) show excellent agreement between the computational results 

and experimental data.  The agreement of the values of the shear modulus obtained from the 

above two estimates is satisfactory, given the uncertainty caused by representing the 

elastomer with the neo-Hookean model, and by the pronounced viscoelasticity of the 

material.   

 Fig. 5(c) plots the pressure in the fluid as a function of the apical displacement of the 

top membrane.   When the bottom membrane is subject to voltage, the pressure in the fluid 

lowers as the voltage ramps up.  By contrast, when the top membrane is pressed by the 

punch, the pressure in the fluid rises as the punch moves down.  Both trends are expected 

from physical considerations; however, at this writing, we do not have reliable experimental 

data to compare with these computational results.  Incidentally, the pressure in the fluid can 

be determined by Eq. (13) once the force on the punch and the radius of contact are 

simultaneously measured in the experiment.   
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 Dielectric elastomers are prone to several mechanisms of failure, including loss of 

tension, rupture by stretching, and electrical breakdown.  One is therefore interested in 

various fields in the active membrane, Fig. 6.  As the voltage increases, the active membrane 

expands its area and pulls the passive membrane down through the hydrostatically coupling 

effect, Fig. 6(a).   Fig. 6(b) shows that the true electric field in whole active membrane 

increase with the increase of the voltage.  When the voltage becomes larger and larger, the 

true electric field at the center of the active membrane increases most dramatically.  Assume 

that electrical breakdown occurs when the true electric field exceeds a critical value.  We 

expect that the electric breakdown will occur at the center of the active membrane when the 

voltage is too high.   As the voltage ramps up, stretches in the active membranes increase, 

Figs. 6(c) and 6(d), but the stresses decrease, Figs. 6(e) and 6(f).  At all levels of the voltage, 

the stretches are the largest at the apex of the membrane.  

For an actuator blocked by the punch, Fig. 7(a) shows the change in the shape of the 

actuator as the radius of contact increases.  As the force on the punch ramps up, the radius of 

contact increases, and the coupling fluid transfers the downward motion to the bottom 

membrane.  Fig. 7(b) plots the area of contact as a function of the apical displacement.  

 

7 Concluding remarks 

 Mimicking muscles and bones, muscle-like actuators are often structures of 

tensegrity, with membranes of soft materials in tension, and members of hard materials in 

compression.  The inclusion of fluids in the structures imparts additional properties.  The 

computational model described here can be used to predict strokes and blocking forces, 
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optimize them by surveying the parameter space, and analyze inhomogeneous fields to avert 

various modes of failure.  We have also used the computational model to explore highly 

nonlinear behavior.  For example, the model has predicted that, when the volume of the fluid 

exceeds a critical value, a HCDE actuator can break symmetry and be in one of two states of 

equilibrium.  The two states are stable in the absence of the voltage and the force.  One state 

can be switched to the other by applying either a voltage or a force.  We have confirmed this 

bistable behavior experimentally, and will report this intriguing development soon.   
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FIG. 1.  Sectional views of a hydrostatically coupled dielectric elastomer (HCDE) actuator.  

Two membranes of a dielectric elastomer are clamped by rigid circular rings.  The bottom 

membrane is sandwiched between soft electrodes, which are connected to a voltage source.  

Confined in between the membranes is a certain volume of a fluid. (a) When the voltage is off, 

the actuator is in the rest state.  (b) When the voltage in on, the bottom membrane expands 

in area and moves downward, pulling the top membrane down through the coupling fluid. 
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FIG. 2.  Experiment to characterize the HCDE actuator.  (a) While the actuator is in the rest 

state, a rigid flat punch is brought to touch the top membrane with negligible force.  (b) 

When the bottom membrane is subject to voltage, both membranes move downward.  (c) 

While the voltage is on, the rigid punch is brought to touch the top membrane with negligible 

force, and the displacement of the punch defines the free stroke.  (d) The voltage is turned off 

while the punch is fixed in position, the punch presses the top membrane over an area of 

contact at a certain blocking force.     
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FIG. 3.  Schematics of states used to describe the computational model.  In each state, the 

position of a particular material particle has been identified by a red dot. 
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FIG. 4.  Free-body diagrams to describe the mechanical equilibrium of a membrane.  (a) In 

the undeformed state of the membrane, imagine an annulus, radii R and dRR . (b) In a 

deformed state, the annulus becomes an axisymmetric band.  The pressure on the face of the 

band is balanced by the longitudinal stress on the rims of the band.   (c) Balance the pressure, 

the longitudinal stress, and the latitudinal stress in a half of the band. 

 

 

 

 

 

 

 

 

 

 

(a) (b) (c) 

  

R 

R+dR 

 

 
s1 

 

s1 

s1 s1 

s2 

s2 

p 

 

  

s1 

r(R) 

r(R+dR) 

 

s1 

z 

p 
p 

s1 

s1 

 



25 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 5.  (a) voltage, (b) force, and (c) pressure as functions of the apical displacement.  The 

experimental data are extracted from Ref. [14] 
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FIG. 6.  Distribution of various fields in the active membrane at several values of the voltage. 

(a) Deformed shapes of the actuator. (b) True electric field. (c) Longitudinal stretch. (d) 

Latitudinal stretch. (e) Longitudinal true stress. (f) Latitudinal true stress.  
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FIG. 7.  While the voltage is off, a rigid flat punch is pressed onto the top membrane.  (a) The 

deformed shapes of the actuator at several values of the radius of contact.  (b) The 

normalized area of contact as a function of the normalized apical displacement. 
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